GenAl Large Telecom Model: The Future of Mobile Network Operations

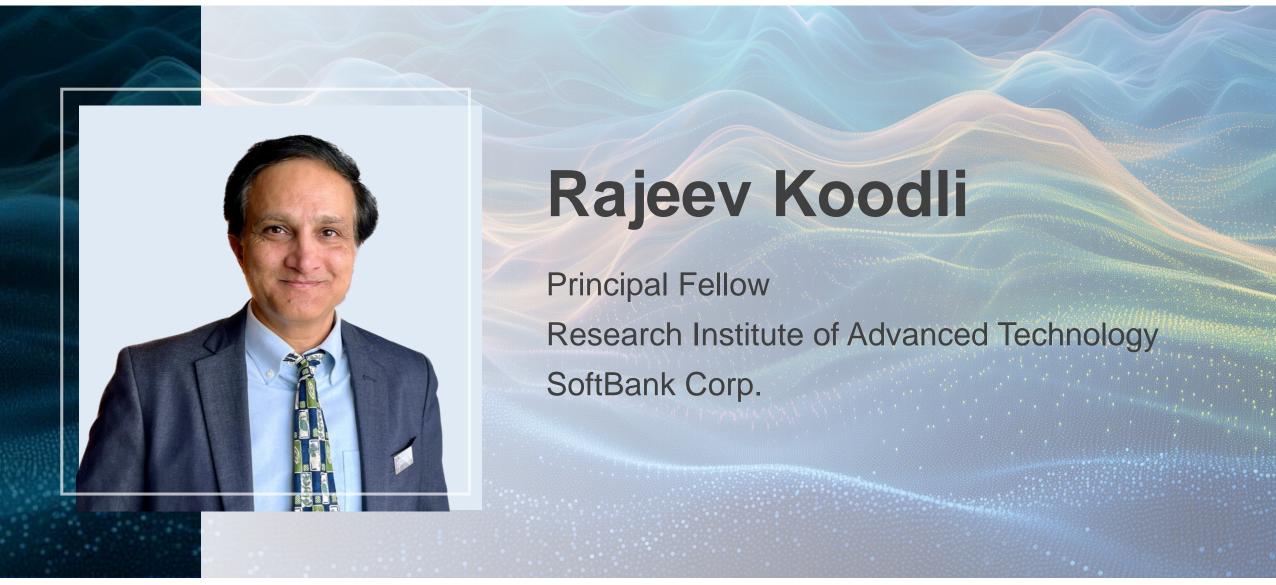
May 12, 2025 11:00 am ET / May 13, 2025 0:00 am JT

Today's Speakers

Rajeev Koodli
Principal Fellow,
Research Institute of
Advanced Technology,
SoftBank Corp.

Shun Tamura
Al Engineer,
Research Institute of
Advanced Technology,
SoftBank Corp.

Speaker



Technical Overview of LTM

Introduction

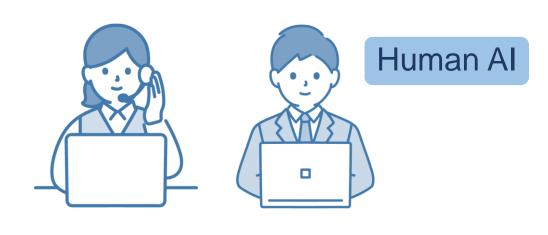
AI-RAN and LTM

AI-RAN

Better gNB performance

CAPEX Reduction

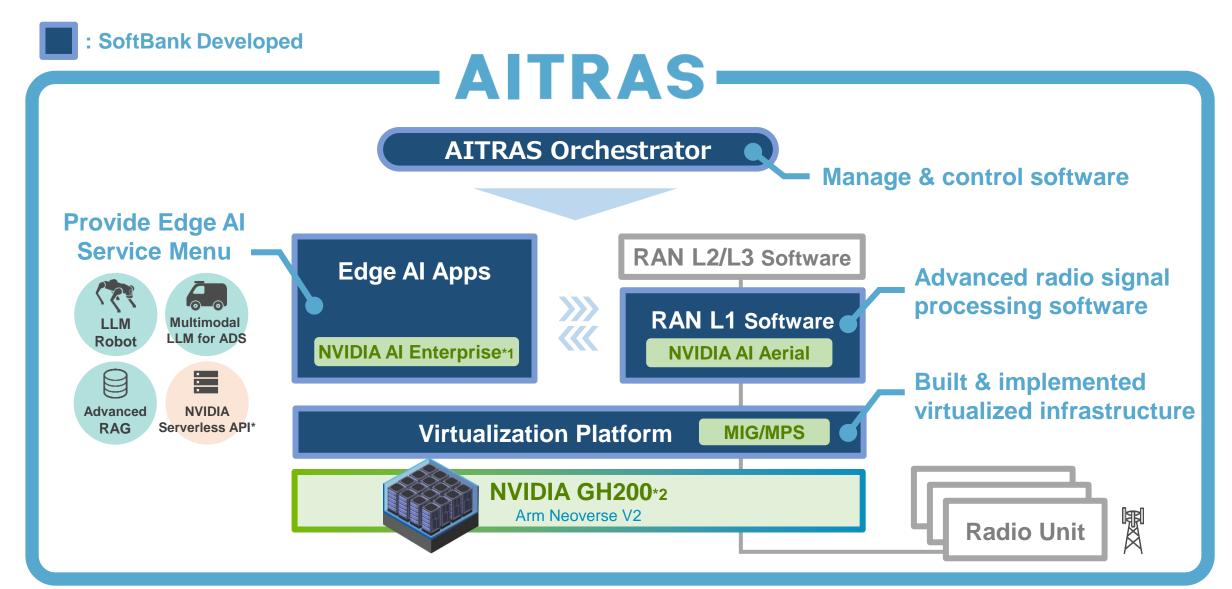
LTM



Better Operation by Al

OPEX Reduction

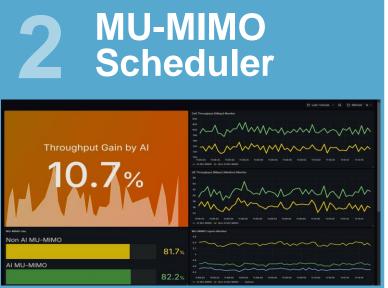
SoftBank AI-RAN: AITRAS

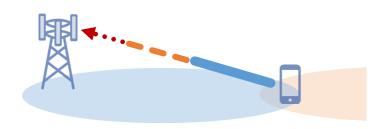


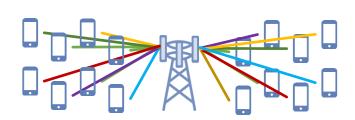
SoftBank's Al-for-RAN

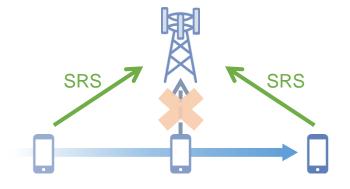
3 Use Cases Introduced at MWC25



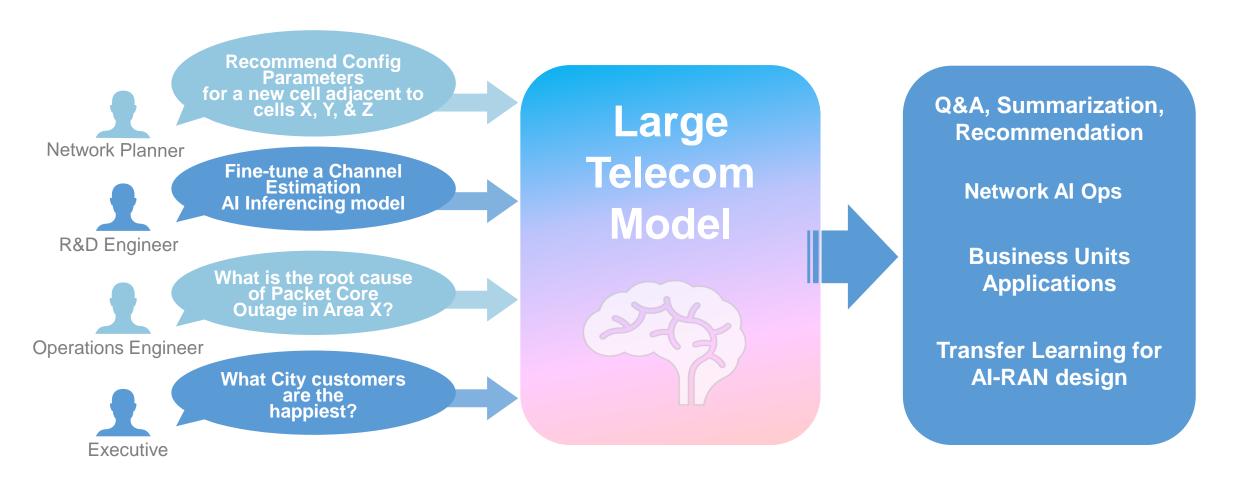








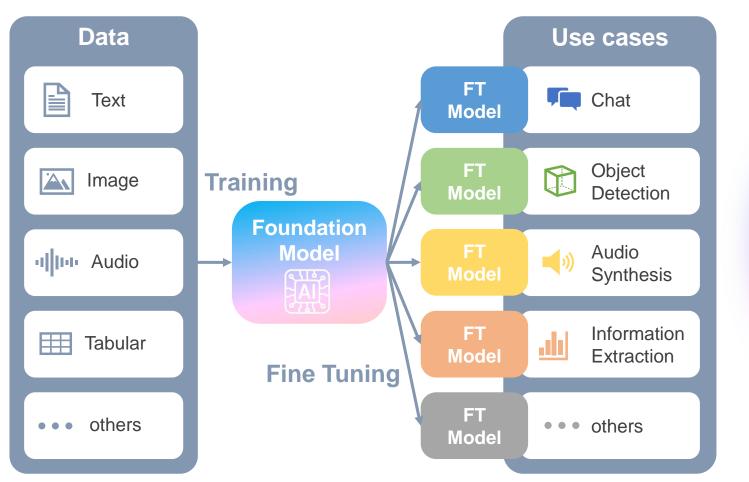
Human Al: Objectives



Democratize Operational Knowledge across the Entire Company using Natural Language Interaction

What is LTM?

Training a single foundation model on diverse data and fine-tuning it for each specific use case



Advantages

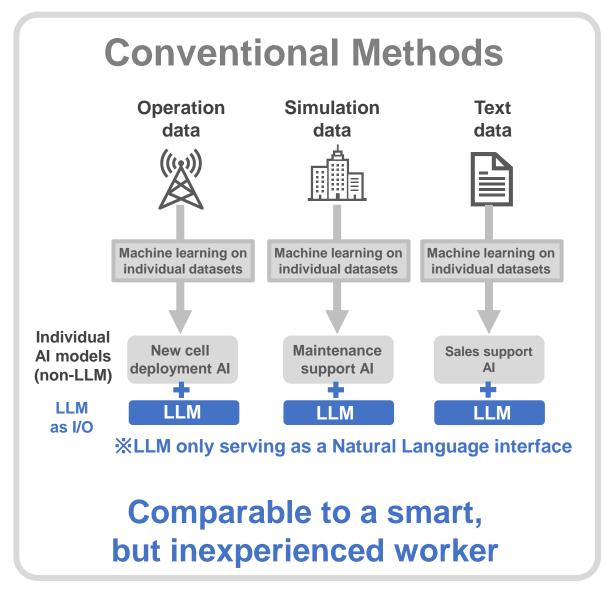
General Expertise

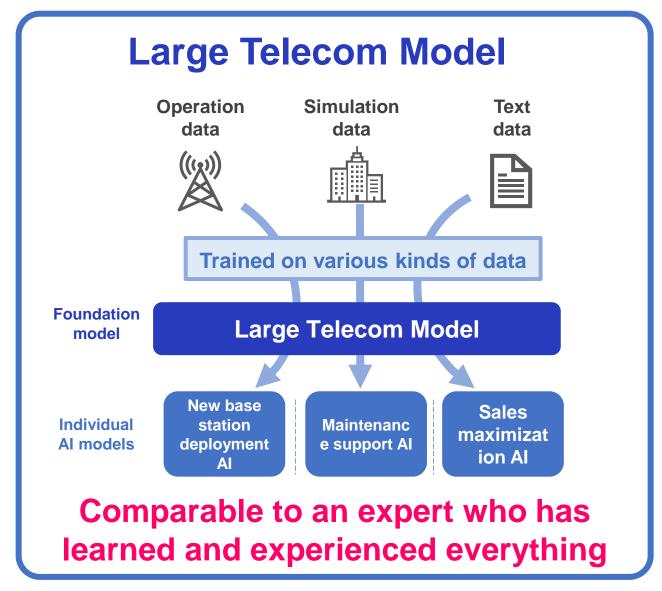
Transfer Learning

Interdisciplinary capability

LTM is not an NLT interface to existing Network OPs

Differences With Conventional Methods





Journey

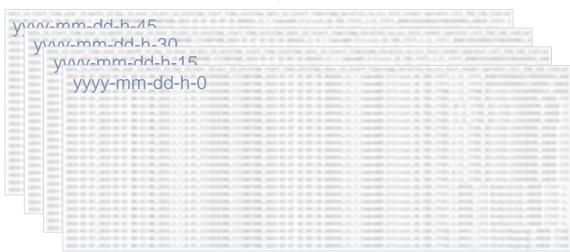
Context

- Started in summer 2024
- Single Modal models
- Vast amount of heterogeneous network operations data (disparate sources, private to SoftBank)
- Need for large enough infra for data processing and training loops

Data: Total of 4TB of SoftBank-Specific Data Corpus

	15min	hourly	daily
RAN KPI data	2024/05/07-2024/08/12 (1840GB ≈ 20GB a day)	2023/08/01-2024/08/12 (1748GB)	-
Core KPI data	2024/05/05-2024/08/12 (27GB)	2023/08/01-2024/08/12 (28GB)	-
Config data	-	-	2024/07/16-2024/08/12 (573GB *zipped ≈ 500GB a day)

KPI data sample (every 15min)

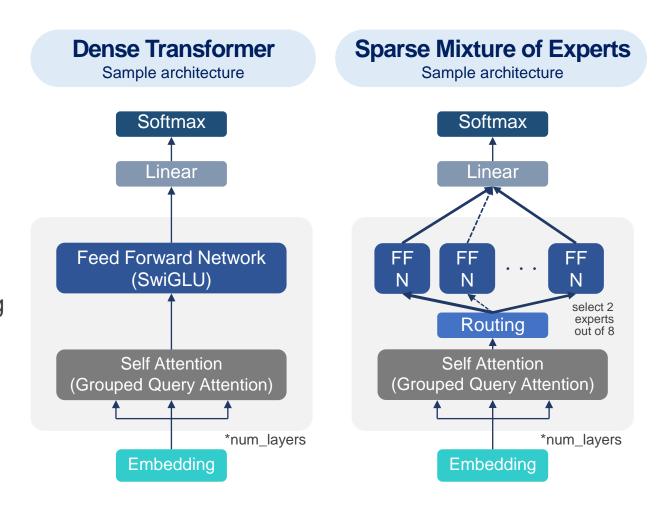


Config data sample (every 15min)

14

Model

- Dense Transformer and Sparse Mixture of Experts (SMoE) are popular architectures
- SMoE allows for faster inference because of fewer active parameters
- In version 1, we were data processing & training-bound. SMoE is also harder to debug
- Therefore, we first focus on a pre-trained model based on the dense transformer



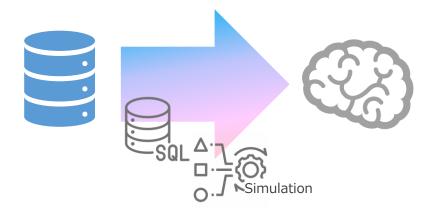
*Positional encoding, Residual network, Normalization, etc. omitted

Challenges with Infrastructure

Data Processing

Huge raw data

LLM training ready data



Significant compute capacity needed to process the raw data

Training

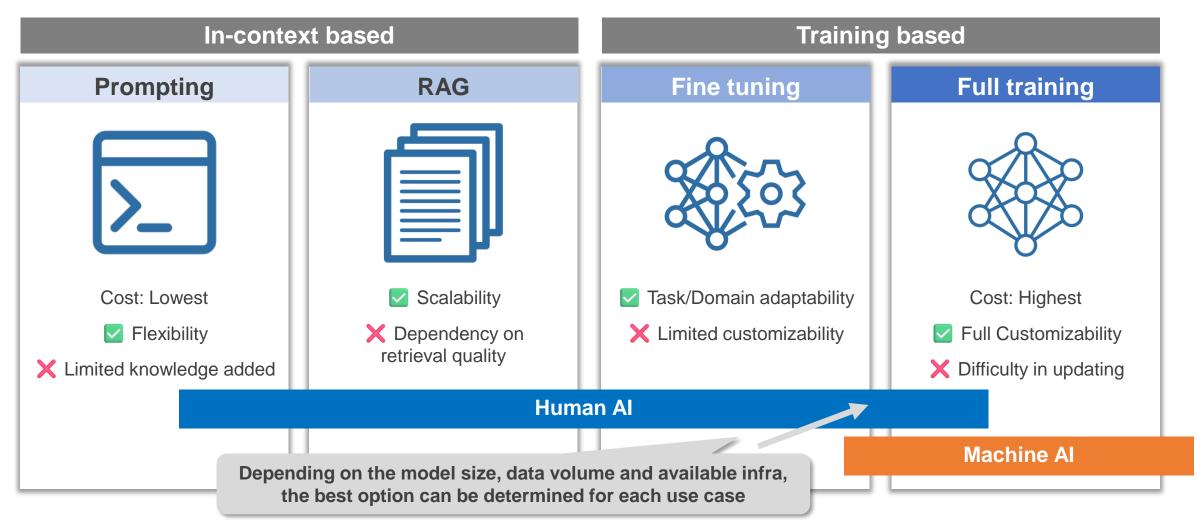
Computation resource required
(Estimated, Unit: GPU Hour = 1 Hour spent on 1 DGX A100)
Based on our approach with LoRA fine tuning

Data size	1k cells	200k cells (All 5G cells)
7 days of data	42 GPU Hours	350x24 GPU Hours
365 days	91x24 GPU Hours	50x365x24 GPU Hours

GPU infrastructure is assumed for any kind of Al training

In LLM full training,
Data Center level GPU
infrastructure is needed

Options for Human AI (and Machine AI)



In-context approaches can boost the base or fine-tuned models' performance (without updating model weights)

Training paradigm can first start with fine tuning and gradually move onto Full training

Supervised Fine Tuning

Compute Efficient

PEFT (e.g. LoRA) with domain data

- Add limited knowledge
- Can start with very small data (<KB, MB)
- Limited adaptability

Sweet spot

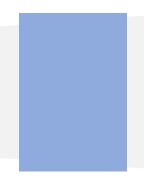
PEFT with larger domain data

- Add more domain knowledge with more parameters to update
- Larger corpus required

Continual Pretraining

- Full adaptability
- Higher risk of catastrophic forgetting

Compute Intensive



Training from scratch

- Full adaptability including tokenizer/model architecture
- Requires huge data/compute

Can migrate towards full training as data and compute scale

End-End Pipeline

Data collection

Data processing

Training & Evaluation

Containerization

Serving as an API

- Collect necessary data without loss
- Design for different data granularity
- Confidentiality, integrity, availability
- Smooth export to machine learning cluster

- Import into databases
- SQL queries, ETL
- Data-grounded synthetic data generation with/without LLM
- Distributed processing on a data lake

- Supervised learning/reinforcement learning
- Distributed learning
- Job scheduling
- Hardware/job monitoring
- Evaluation using public/private datasets

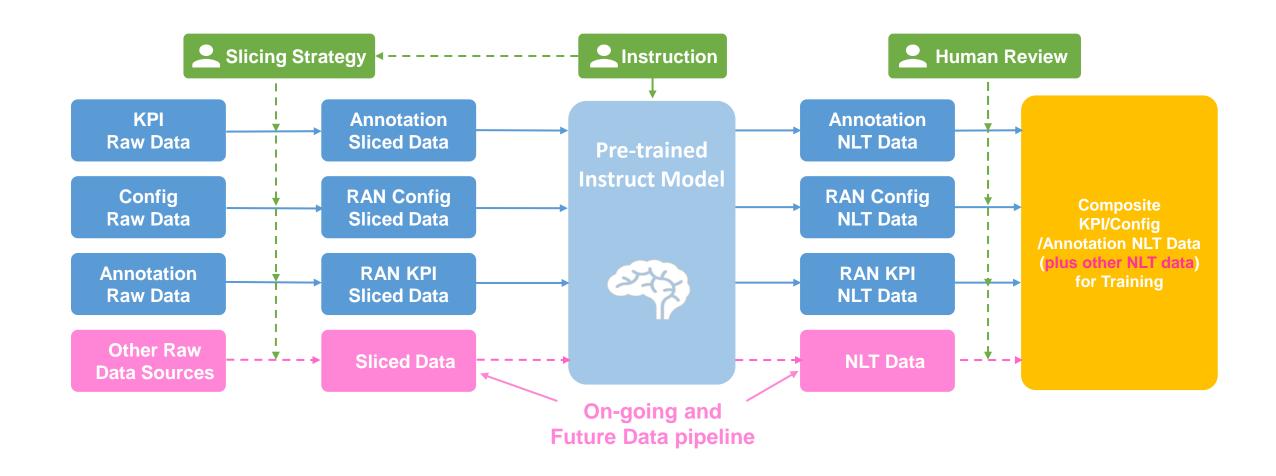
- Model format conversion (ONNX, etc.)
- Integration with inference server
- Continuous updates of environment
- Security scanning

- Deployment on cloud infrastructure
- Auto-scaling
- Observability
- Performance optimization

Loop

- Continuous updates with latest data
- Continuous performance improvement

Data Pipeline



Expert Annotation for Learning

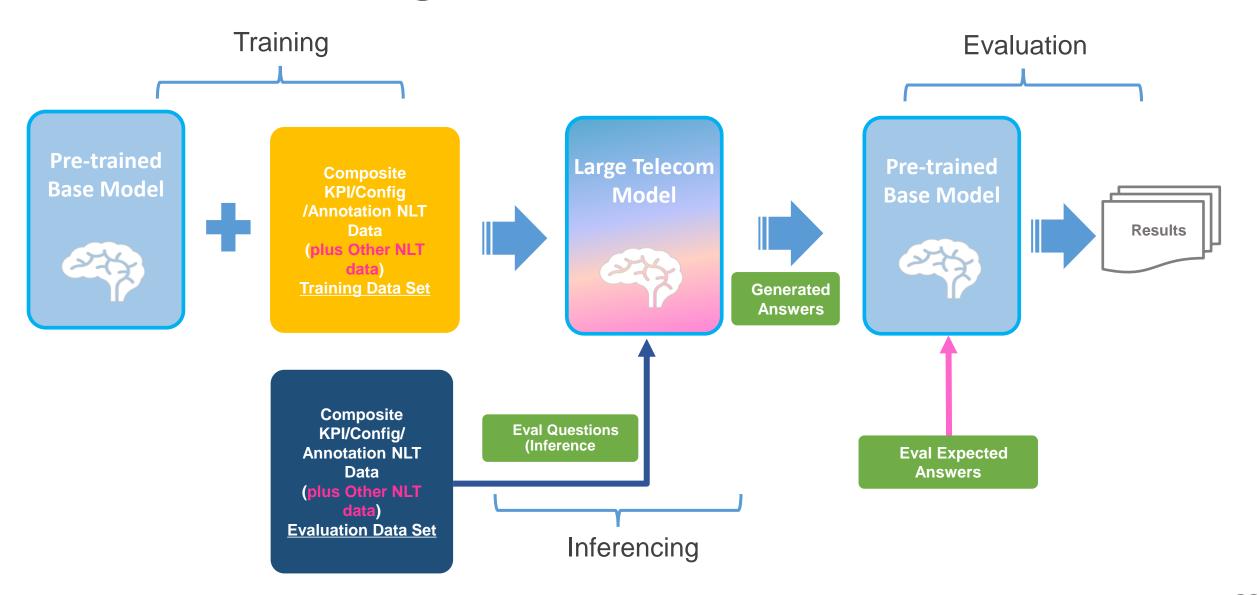
Absolute priority of carrier frequency used by cell reselection procedure. Corresponds to parameter priority in 3GPP TS 36.304, Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode.

Value 0 means lowest priority. UE behavior when no value is entered is specified in 3GPP TS 36.304. Value -1 means frequency is excluded from SIB5 and IdleModeMobilityControlInfo.

Parameters used when reselection to another cell during RRC Idle. You can set the reselectionPriority parameter for each transition destination LTE frequency, notified in SIB5.

The relative evaluation of the priority of the own cell notified by SIB1 and the priority of the frequency notified by SIB5 is separated into HigherPriority, EqualPriority, and LowPriority, and the Idle transition operation is performed in accordance with the 3GPP regulations.

Training & Evaluation Pipeline



Current Model Capabilities

The current version 1 of the model is trained to perform natural language processing tasks (below). It is also finetuned for business applications (such as base station config management)

- Open-ended Q&A
- Trend analysis
- Relation extraction
- Summarization
- Recommendation

General capabilities: What Do They Look Like

RAN KPI

```
"question": "Describe the time-based trend of `nr_setup_att` values."
"expected": "Increasing in morning, peaking in afternoon, decreasing at night"
"generated": "Values tend to increase from midnight to afternoon and decrease from evening to night."
```

RAN Config

```
"question": "Description of the typical configuration of the `isHoAllowed` parameter within the network configuration."
"expected": "The `isHoAllowed` parameter is typically set to true."
"generated": "The typical configuration of the `isHoAllowed` parameter is true."
```

Annotation

```
"question": "What does the `cell_state` parameter represent in the network configuration?"
"expected": "The `cell_state` parameter indicates whether a cell is locked or not."
"generated": "The `cell_state` parameter represents the cell's current state, with possible values including locked and unlocked."
```

Relationship between RAN KPI parameters

```
"question": "Identify the dependency pattern between `dl_active_user_max` and `cu_max` values."
"expected": "The values tend to move together, but with varying intensities."
"generated": "The values tend to be dependent, with changes in one often affecting the other."
```

Relationship between RAN KPI and RAN Config

```
"question": "Are `nr_setup_sr` and `GNBDUFunction/Rrc/t304` values dependent on each other during midday?"

"expected": "No, `nr_setup_sr` and `GNBDUFunction/Rrc/t304` values do not show dependency on each other during midday."

"generated": "No, `nr_setup_sr` and `GNBDUFunction/Rrc/t304` values do not appear to be dependent on each other during midday."
```

Summarization of specific cells (Urban, 1.7GHz, etc.)

```
"question": "What is the most common `frequency_band` among
DenseUrban cells?"
"expected": "Most common `frequency_band` among DenseUrban cells
is 1.7GHz."
"generated": "1.7GHz"
```

Lessons Learned

Technical

- Slicing the different data types (KPI, Config, Annotation) into chunks is crucial for training.
 Diverse data is important for general capabilities
- Organizing different data types into Model context length can be challenging
- Both data and model hyper-parameter tuning does take time
- Model evaluation is tricky considering the reliance on an evaluation model for judgement.
 Semantic ambiguity is to be expected in answers and may need human inspection.
- Tabular time-series data handling can be improved with dedicated encoders

Others

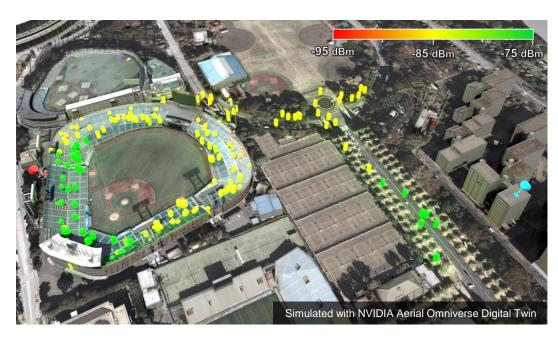
- Data is seldom in one place or org. Access times vary
- Setting up internal infrastructure for securely handling data requires proper governance (aka time-consuming, rightfully)
- Finding the right mix of domain and AI expertise and getting them to work together is fun!

SoftBank

Speaker

MNO Use Cases

Specific UC Example: RAN Config Optimization



Scenario

Handling congestions during events

What LTM does

 Optimize RAN config parameters of base stations within targeted area

Output

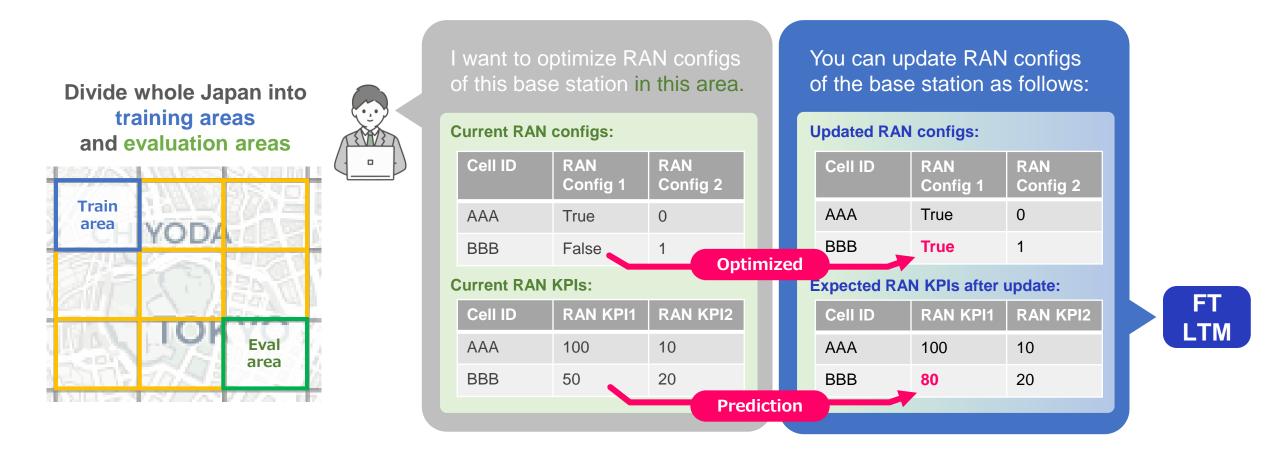
Input

- Order for congestion handling (Intent)
- RAN configs of neighboring BSs
- RAN performance (KPI) of neighboring BSs

Fine Tuned LTM

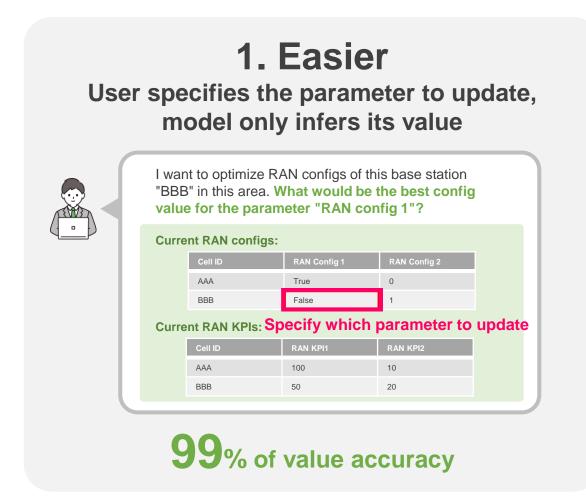
 RAN config parameters of BSs that need to be updated

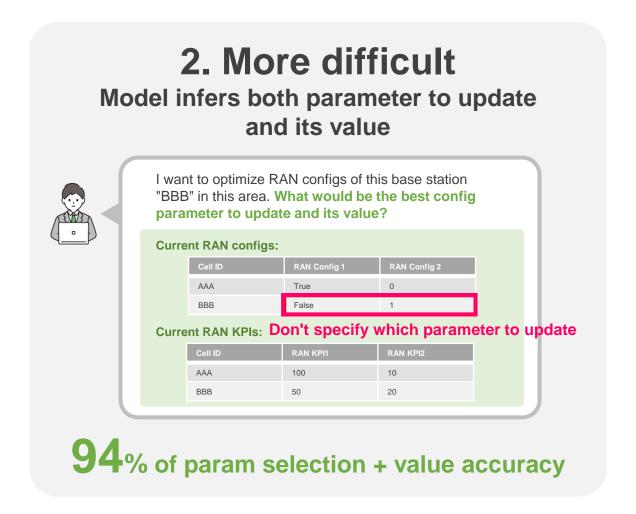
Fine-Tuning Methodology for Specific Use Cases



Number of synthetic optimization scenarios based on SoftBank's actual data

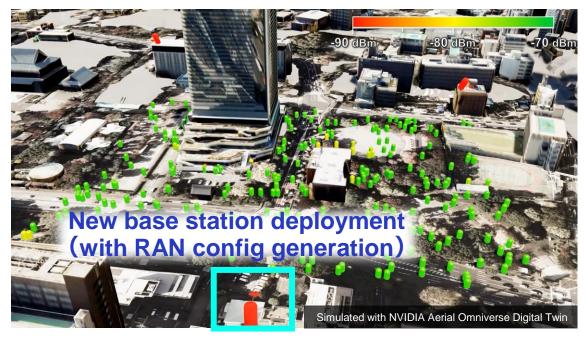
Evaluation Results





LTM works even in more difficult settings w/ param identification

Advanced: Full RAN Config Generation



Scenario

 Countermeasures for weak signal areas caused by new construction

What LTM does

Suggests location and RAN configs of the new base station

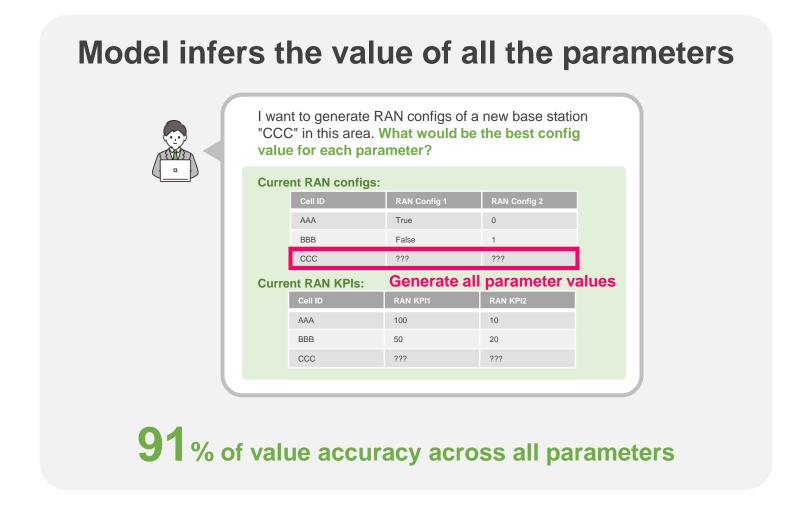
Input

- Order for weak signal area countermeasures
- RAN configs
- RAN KPIs

Output

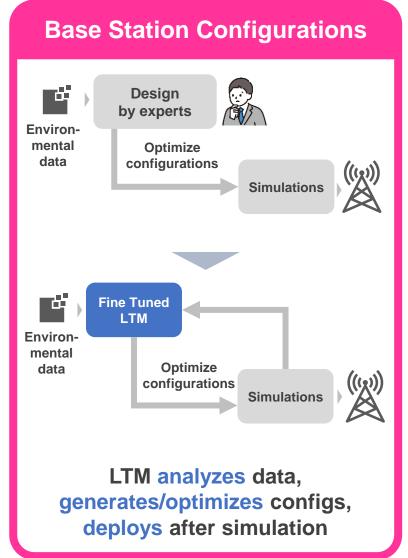
 Full RAN configs for the new BS

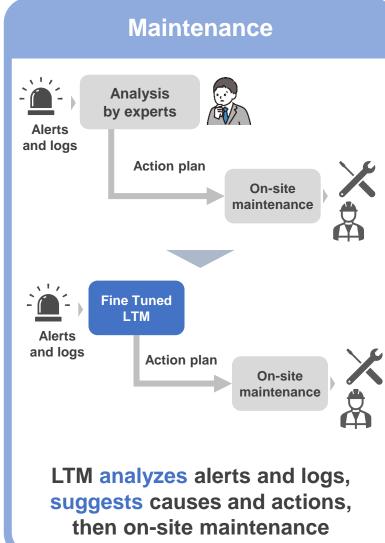
Evaluation Results: Full Generation

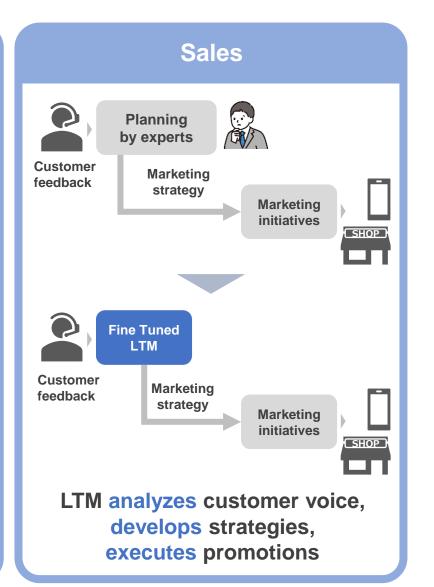


LTM even capable of full RAN config generation

Examples of MNO Use Cases







Lessons Learned

LTM's applicability to very specific downstream tasks i.e., use cases

Normally, using specific external tools is an option in such cases, but we proved possibility to solve these specific tasks with fine tuning

Good reproducibility of real-world optimization

Directly suggests the possibility of replacing existing business operations

No need to worry too much about the output format

Fine tuning is usually good at keeping format-level consistency

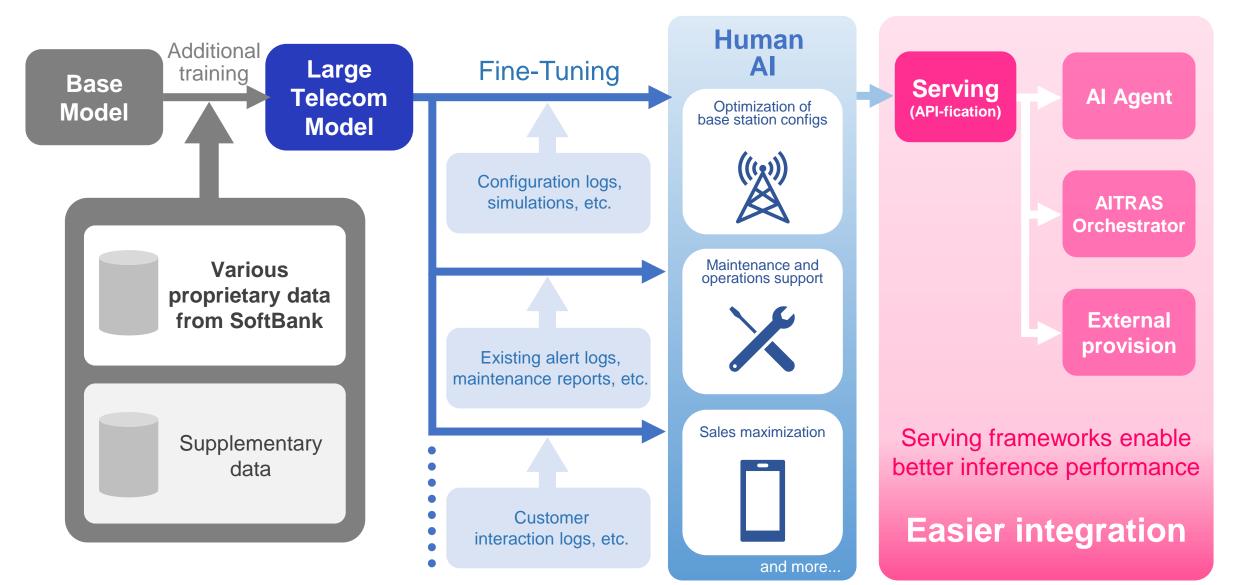
Treating tabular data with LLM is computationally not efficient

Specific table encoder can be a solution

NLT data is effective, but still needs more sampling

Reinforcement Learning will be needed

Integration into Actual Operations



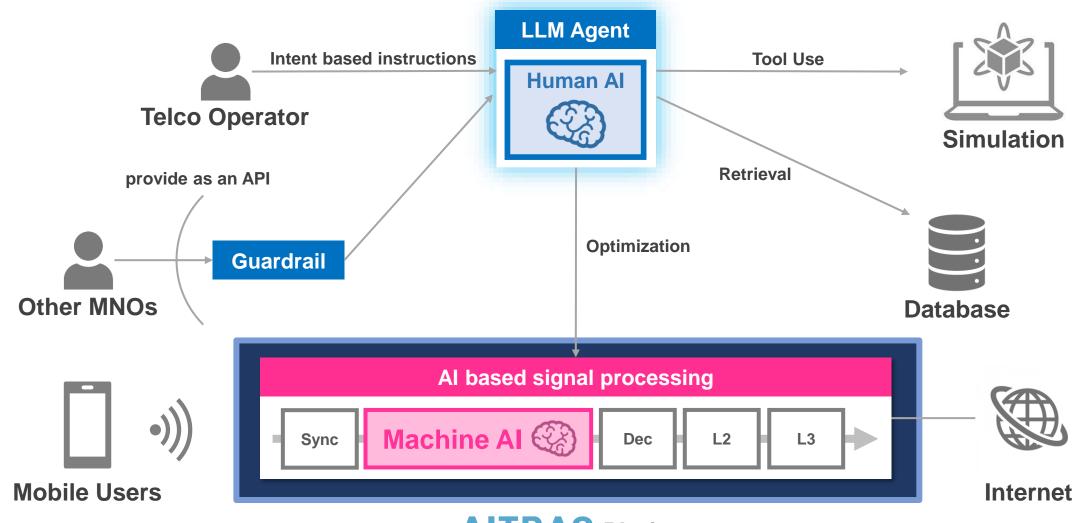
Future Outlook

Summary

- A foundation model provides a unified approach to adopting GenAl across an organization without requiring specialized skill sets
- A foundation model is also the basis for transfer learning to a variety of use cases in operations
- Telcos have enormous amounts of invaluable multi-modal data. Creating and managing quality data sets is half the problem
- Training and Evaluation require non-trivial experimentation involving AI and Mobile human expertise. And infrastructure!
- A foundation model may be a good investment if a Telco wishes to holistically evolve with GenAl
- SoftBank is upgrading LTM to take advantage of recent advances

Next Steps

SoftBank will replace and optimize various operational use cases with Al



SoftBank

